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ABSTRACT
Biochar produced from oil palm biomass has been demonstrated to be effectively utilized in
energy, soil amendment, wastewater treatment, catalyst and composting applications. However,
the industrial development of biochar plants for specific biomass requires an adequate
description of the pyrolysis process of the feedstock. Knowledge of biomass devolatilization
characteristics and kinetics may describe the pyrolysis process adequately, which would be
needed for the proper industrial process design and optimization. Therefore, in this review, the
thermal degradation characteristics and pyrolysis kinetics of oil palm biomass residues are
discussed to reveal important influential factors and pyrolysis reaction mechanisms. The findings
from the literature indicate that the main devolatilization temperature range and the overall
reactivity are 352 to 380 °C and 0.360 mg min-1 °C-1 for kernel shell, 336 to 360 °C and 0.270
mg min-1 °C-1 for mesocarp fiber, and 329 to 356 °C and 0.530 mg min-1 °C-1 for empty fruit
bunch. The kinetic parameters for the consecutive reactions model suggest that the ease to
commence pyrolysis reaction was in the following order: frond < kernel shell < mesocarp fiber
< empty fruit bunch. The percentage biochar yield for the residues was higher than 23 wt.%
under slow pyrolysis conditions and the tendency of obtaining high biochar yield followed this
order: kernel shell > mesocarp fiber > empty fruit bunch > trunk > frond. The tendency for high
biochar yield could be attributed to the proportion of lignin content which slowly decomposes
over a wide temperature range. The treatment temperatures of 400, 500, and 600 °C are
adequate to carbonize the oil palm biomass residues for producing biochars suitable for use as
biofuels, activated carbon, and reducing agent, respectively.

KEYWORDS: Oil palm biomass, pyrolysis, devolatilization rates, activation energy, reaction
mechanism.

1. INTRODUCTION
Carbon-rich materials are among the highly utilized materials in our daily lives owing to their
several applications. Coal and petroleum have been the most important resources of carbon-rich
materials, however, exploiting them continuously is a matter of concern because of the short
depletion time of their reserve and the negative environmental impacts of their by-products
(Shafiee and Topal, 2009) . To address these concerns, the need to utilize other alternative
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resources that are renewable, abundant and friendly to the environment becomes necessary. One
of such alternatives is biomass, which has garnered interest in scientific and industrial spheres
for several decades (di Blasi, 2008; Diyanilla et al., 2020) . During the past few decades, the
conversion of biomass using pyrolysis has witnessed significant research efforts as a result of its
ability to produce biochar, a carbon-rich material, with diverse properties appropriate for
effective use in numerous applications (Nanda et al., 2016) , which include, but not limited to,
wastewater treatment and water purification (Dawood et al., 2017), composting (Awasthi et al.,
2017), gas pollution control (Chen et al., 2017), and remediation and revitalization of soil (Liu et
al., 2020).

Taking advantage of its widespread availability and high carbon content, oil palm biomass (OPB)
could be an important feedstock for biochar production plants. In the year 2014, about 95.4
million metric tons of OPB residues were generated in Malaysia alone (Onoja et al., 2019). The
biomass consists of the trunk (OPT), frond (OPF), empty fruit bunch (EFB), mesocarp fibre (MF)
and kernel shell (PKS). Most of these biomass residues are being commercially utilized for
several purposes including livestock feed (Sharmila et al., 2014), biocomposite (Yasim-Anuar et
al., 2019) , raw material for paper and pulp production (Singh et al., 2013) , organic fertilizers
(Hayawin et al., 2016) and briquettes (Onoja et al., 2019). In addition to these products, biochar
can be produced from OPB and used for several applications (Sulaiman et al., 2011) . In this
respect, several investigations have been carried out and their findings demonstrate the ease of
converting OPB to biochar using the pyrolysis technique. Pyrolysis is the thermal decomposition
of carbon-bearing material in an oxygen-limited environment. Pyrolysis is the common and
easiest technique for producing biochar and the analytical procedure employed by researchers for
investigating the chemical and physical properties of biochar and the thermal behaviour of
biomass (Bach and Chen, 2017; Chen et al., 2015a; Dawood et al., 2017; Keiluweit et al., 2010;
Li et al., 2014).

Despite being an important feedstock for producing biochar, an adequate description of the
pyrolysis process of OPB residues is required for successful biochar production on an industrial
scale. In addition, the wide compositional variation among OPB residues related to
lignocellulosic and mineral contents makes it necessary to obtain sufficient information on their
thermal decomposition characteristics and pyrolysis kinetics for optimum production process
design and plant development. Therefore, in this review, the thermal degradation characteristics
and pyrolysis kinetics of OPB residues are discussed to reveal important influential factors and
pyrolysis reaction mechanisms. To achieve this objective, the characteristics of OPB residues
were introduced; analysis, evaluation and comparison of thermal degradation parameters,
pyrolysis kinetics and mechanism are established by summarizing, synthesizing and evaluating
thermogravimetric (TG) data extracted from published studies. TG data analysis is among the
common techniques used to characterize the thermal process, describe the decomposition
behaviour and determine kinetics parameters.

2. COMPOSITIONAL CHARACTERIZATION OF OIL PALM BIOMASS RESIDUES
Biomass of oil palm origin is typically found in tropical regions as residues generated in oil palm
mills and plantations. The estimated global generation of the residues was reported to be around
184.6 Mt/year on dry weight bases (Kelly-Yong et al., 2007) , whereas in Malaysia alone the
quantity generated increased from 55.7 Mt in 2005 to 82.0 Mt in 2015 and 100 Mt was estimated
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by 2020 (Akhlisah et al., 2021; Shuit et al., 2009) . The quantities of OPT, OPF, EFB, MF and
PKS generated per annum in Malaysia are presented in Figure 1. The cellular structure of these
vegetative components differs due to variations in their biological function, which invariably
determines the lignocellulosic and mineral content of each residue. For instance, the percentage
content of cellulose, hemicellulose, lignin and extractives reported in the literature varies from
20.5 to 49.1%, 9.8 to 36.6%, 18.1 to 51.5%, and 1.7 to 8.6%, respectively (Table 1).
Carbohydrates, proteins and lipids are other biochemical components that are also present in
trace amounts in the residues. The content of carbon varies between 43 and 51%, and those of
hydrogen, oxygen and nitrogen vary between 5 and 7%, 38 and 41%, and 3 and 10%,
respectively (Liew et al., 2018) . The mineral contents are low compared to many agricultural
crop residues and municipal solid wastes (Kong et al., 2014; Ordoñez-Frías et al., 2020).

Figure 1: Availability of Oil Palm Biomass Residues in Malaysia. Source (NBS, 2013; Shuit et al., 2009).

Table 1. List of Lignocellulosic Composition, Extractive and Ash of Oil Palm Biomass Residues
Oil palm
biomass

Lignocellulosic composition (%) Extractives
(%)

Ash
(%)

Reference

Cellulose Hemicellulose Lignin
PKS 33.2 18.2 48.7 – – (Sabil et al., 2013)
PKS 27.7 21.7 44.0 – – (Rugayah et al., 2014)
PKS 20.5 22.3 51.5 4.7 1 (Saka et al., 2008)
MF 25.4 21.2 24.6 – – (Zakaria et al., 2015)
MF 44.0 23.0 32.9 – – (Sabil et al., 2013)
MF 39.2 9.8 32.9 8.6 9.3 (Saka et al., 2008)
EFB 48.0 25.1 19.9 – 2.5 (Abdul Rahman et al.,

2012)
EFB 49.1 24.5 26.5 – – (Sabil et al., 2013)
EFB 28.3 36.6 35.1 – – (Palamae et al., 2017)
EFB 33.3 23.2 25.8 – – (Barlianti et al., 2015)
EFB 37.9 35.0 24.0 2.7 1.5 (Saka et al., 2008)
OPF 48.4 23.1 18.1 – 0.5 (Abdul Rahman et al.,

2012)
OPF 39.5 29.8 23.3 1.7 5.7 (Saka et al., 2008)
OPT 44.4 29.3 21.2 – 1.5 (Abdul Rahman et al.,

2012)
OPT 38.9 23.8 2.4 – – (Saka et al., 2008)
OPT 30.6 33.2 28.5 3.6 4.1 (Abdul Rahman et al.,

2012)
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3. PYROLYSIS OF OIL PALM BIOMASS RESIDUES
3.1 Production of Biochar
The lignocellulosic components of biomass decompose into char, condensable (bio-oil) and non-
condensable gasses in an inert and high-temperature environment, a process referred to as
pyrolysis (Wang et al., 2017) . Generally, the percentage yield for each product correlates with
the pyrolysis conditions and reactor type (Bach and Chen, 2017) . Reports in the literature
indicate that biochar can be produced from OPB via several pyrolysis modes namely: fast
pyrolysis, slow pyrolysis, microwave pyrolysis, catalytic pyrolysis and self-sustained
carbonization (Table 2). The classification is based on operating conditions and has been
employed in either lab- or pilot-scale reactors. The slow and microwave modes are commonly
carried out in a fixed-bed reactor while a fluidized-bed reactor typically handles fast pyrolysis.
Both fixed-bed and fluidized-bed reactors are common for catalytic pyrolysis.

Based on the reports of previous studies (Table 2), the yield of biochar from OPB produced
using slow pyrolysis mode at 500 oC varies from 26.4 to 40.6 wt.%, where PKS and OPF had the
highest and lowest percentage biochar yield, respectively. The range for the biochar yields is
observed to be slightly lower (24.5 to 37.8 wt.%) under fast pyrolysis conditions. Under catalytic
effect, biochar yield is significantly reduced to 12.4 wt.% for PKS (Kim et al., 2014a) .
Microwave pyrolysis is capable of yielding a high amount of biochar similar to slow pyrolysis.
Overall, biochar yields from OPB are dependent on the mode of pyrolysis: slow pyrolysis and
microwave pyrolysis favour high biochar yield, whereas fast pyrolysis and catalytic pyrolysis
produce more bio-oil and non-condensable gasses than biochar.

3.2 Thermal Degradation Characteristics
Adequate knowledge of biomass thermal behaviour and pyrolytic kinetics is critical for
understanding its thermal stability, conversion and product formation (Bach and Chen, 2017) .
The thermal degradation characteristics of several biomass materials are typically examined
under pyrolytic conditions using TG analysis. The pyrolytic characteristics of OPB have been
investigated by examining the critical role played by the thermal degradation of their
lignocellulosic components: cellulose, hemicellulose, and lignin. The TG and derivative
thermogravimetric (DTG) curves represent the thermal behaviour of biomass during thermal
treatment. Several parameters obtained from TG and DTG curves related to temperature,
devolatilization rates and mass fractions are used to quantify the thermal degradation
characteristics of biomass materials. To find out the degradation parameters of OPB residues, the
TG and DTG parameters reported in the literature are summarized in Table 3. Similar to the
thermal degradation of most lignocellulosic-based biomass, the pyrolytic thermal degradation of
OPB residues could be divided into three sequential reactive zones viz: moisture drying,
pyrolysis, and carbonization (Idris et al., 2010; Khor et al., 2010; Lee et al., 2017; Liew et al.,
2018).
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Table 2: List of Literature of Oil Palm Biomass Pyrolysis
OPB Particle Pyrolysis Reactor Operating conditions Yield (wt. %) Reference
residue size

(mm)
Mode Temperature

(°C)
Heating rate
(°C min-1)

Residence
time (min)

Purge gas flow
rate (cm3 min-1)

Biochar Bio-
oil

PKS 1–2 Slow Fixed-bed 500 10 60 2000 35.3 47.4 (Abnisa et al., 2013)

PKS – Slow Fixed-bed 500 10 120 150 40.6 – (Lua et al., 2006)

PKS 1–2 Slow Fixed-bed 450 10 30 150 38.9 – (Lua and Guo, 1998)

PKS 0.5–2 Slow Fixed-bed 500 10 60 50 37.1 – (Lee et al., 2017)

EFB 0.5–2 Slow Fixed-bed 500 10 60 50 35.1 – (Lee et al., 2017)

EFB 2–4 Slow Fixed-bed 600 30 15 30 35.5 29.6 (Yakub et al., 2015)

EFB
0.091–
0.106 Slow

Fluidized-
fixed bed 400 30 10 1500 25.0 36.0 (Sukiran et al., 2009)

EFB 1–2 Slow Fixed-bed 500 10 60 2000 29.1 45.8 (Abnisa et al., 2013)

MF
0.125–
0.25 Slow Fixed-bed 400 10 15 200 33.0 47.0 (Kabir et al., 2017)

MF – Slow Fixed-bed 500 10 60 – 33.1 38.9 (Hooi et al., 2009)

MF – Slow Fixed-bed 400 10 60 2000 44.8 34.7 (Safana et al., 2018)

MF
0.063–
0.5 Slow Fixed-bed 550 10 10 200 34.0 38.0

(Khanday and
Hameed, 2016)

MF 1–2 Slow Fixed-bed 500 10 60 2000 29.8 43.9 (Abnisa et al., 2013)

OPT 2–4 Slow Fixed-bed 600 30 15 30 29.7 34.3 (Yakub et al., 2015)

OPT 2 Slow Fixed-bed 600 120 – 30.0 – (Deris et al., 2006)

OPT 1–2 Slow Fixed-bed 500 10 60 2000 33.6 40.9 (Abnisa et al., 2013)

OPF 1–2 Slow Fixed-bed 500 10 60 2000 30.2 43.5 (Abnisa et al., 2013)

OPF 2–4 Slow Fixed-bed 600 30 15 30 29.4 34.2 (Yakub et al., 2015)

OPF 0.6 Slow Fixed-bed 500 40 – 50 26.4 21.4 (Isa et al., 2016)

OPF
0.125–
0.25 Slow Fixed-bed 400 10 15 200 27.0 49.0 (Kabir et al., 2017)

PKS 1–2 Fast
Fluidized-
bed 500 – – – 32.0 51.0

(Asadullah et al.,
2013)
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Table 2. (cont.)
OPB Particle Pyrolysis Reactor Operating conditions Yield (wt. %) Reference
residue size

(mm)
mode Temperature

(°C)
Heating rate
(°C min-1)

Residence
time (min)

Purge gas flow
rate (cm3 min-1)

Biochar Bio-
oil

PKS 0.125–1.4 Fast
Fluidized
-bed 485 – 3.8 (s) 2950 30.2 32.1

(Kim et al.,
2014b)

PKS – Fast
Fluidized
-bed 478 – 3.8 (s) – 23.2 30.3

(Kim et al.,
2013)

EFB – Fast
Fluidized
-bed 478 – 3.8 (s) – 28.9 36.6

(Kim et al.,
2013)

EFB 0.3–0.355 Fast
Fluidized
-bed 500 – 1.32 (s) 3500 25.9 50.2

(Sulaiman and
Abdullah, 2011)

EFB 0.355–0.6 Fast
Fluidized
-bed 500 – 1.1 (s) – 24.5 –

(Abdullah et al.,
2011)

OPF < 0.07 Fast
Fluidized
-bed 500 – 600 – 2 - 5 (s) – 35.8 35.4

(Rinaldi et al.,
2017)

PKS 1–2 Microwave
Fixed-
bed 500 W – 25 – 38.0 –

(Liew et al.,
2018)

PKS – Microwave
Fixed-
bed

405
(750 W) – 30 vacuum 28.0 –

(Nam et al.,
2018)

PKS – Microwave
Fixed-
bed 450 W – 25 20000 47.0 25.0

(Salema and
Ani, 2011)

PKS – Microwave
Fixed-
bed

500
(450 W) – – – 34.0 28.0

(Abubakar and
Ani, 2013)

PKS – Microwave
Fixed-
bed

500
(800 W) – – – 39.2 38.0 (Ho et al., 2018)

EFB – Microwave
Fixed-
bed

500
(800W) – – – 32.0 36.0 (Ho et al., 2018)

MF – Microwave
Fixed-
bed

500
(800 W) – – – 29.0 37.0 (Ho et al., 2018)

MF 0.3–0.6 Microwave
Fixed-
bed 450 W – 25 20000 50.0 22.0

(Salema and
Ani, 2011)

MF – Microwave
Fixed-
bed

500
(500 W) – – – 27.2 17.4

(Hossain et al.,
2017)

PKS

1.18–3 Catalytic
(Na2CO3)
microwave

Fixed-
bed 600 W – – 4000 30.1 31.0

(Mushtaq et al.,
2014)

PKS
0.125–1.4 Catalytic (zsm-

5) fast
Fluidized
-bed 485 – 3.8 (s) 2950 12.4 42.9

(Kim et al.,
2014b)
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PKS
0.125–1.4 Catalytic

(Ecat) fast
Fluidized
-bed 485 – 3.8 (s) 2950 30.1 33.5

(Kim et al.,
2014b)

MF
0.063–0.5 Catalytic

(OPAZ)
Fixed-
bed 550 10 10 200 35.0 38.0

(Khanday and
Hameed, 2016)

EFB 30–99 Self-sustained
carbonization

Fixed-
bed

417 – 590 – 900–1900 – 16.3 – (Idris et al.,
2015)

Table 3. Pyrolytic TG and DTG Characteristic Parameters of Oil Palm Biomass
OPB TGA conditions Weight Thermal degradation zones Reference
residue Loss

(%)
Moisture

drying
Pyrolysis carbonization

First region Second region
Temp.
range
(°C)

Tpeak1
(°C)

Tonset
(°C)

Tpeak2
(°C) Ypeak2

(mg min-1)

Tpeak3
(°C) Ypeak3

(mg min-1)

Toffset
(°C)

Tpeak4
(°C) Ypeak4

(mg min-1)

PKS
10 °C min-1,
900 °C, 20 mg,
<0.212 mm

– 30 –
150 – 200 282 0.390 352 0.760 – 704 0.180 (Idris et al.,

2010)

PKS
10 °C min-1,
900 °C, 1–2 mm,
25 mL min-1

~ 78 90 –
150 110 ~

200 – – – – 430 – – (Liew et al.,
2018)

PKS

10 °C min-1,
900 °C, 15 mg,
0.5–2 mm, 50
cm3 min-1

~ 75 30 –
200 120 – 282 – 356 – – – – (Lee et al.,

2017)

PKS

15 °C min-1,
850 °C, 5 mg, <
0.3 mm, 150 mL
min-1

~ 69 < 150 61 – 300 0.395* 364 0.535* – 700 0.148*
(Asadieraghi
and Wan
Daud, 2015)

PKS
20 °C min-1,
900 °C, 10 mg,
50 mL min-1

~ 64 < 170 – – 274 – 354 – – – –

(Ninduangdee
and
Kuprianov,
2013)

PKS
10 °C min-1,
550 °C, 8 mg,
0.21 mm

~ 68 – 119 – 280 0.362 358 0.470 – – – (Surahmanto
et al., 2017)
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PKS

20 °C min-1,
700 °C 10 mg,
0.3 mm, 100 mL
min-1

~ 70 – – – 305 0.995 380 1.449 – – –
(Luangkiattikh
un et al.,
2008)

MF
10 °C min-1,
900 °C, 20 mg,
<0.212 mm

– 30 –
150 – 180 277 0.250 336 0.600 – – – (Idris et al.,

2010)

MF
10 °C min-1,
900 °C, 1–2 mm,
25 mL min-1

~ 78 90 –
150 110 ~

200 – – – – 420 – – (Liew et al.,
2018)

MF

15 °C min-1,
850 °C, 5 mg, <
0.3 mm, 150 mL
min-1

~ 77 < 150 61 – 301 0.500* 351 0.700* – – –
(Asadieraghi
and Wan
Daud, 2015)

MF
10 °C min-1,
550 °C, 6–8 mg,
100 mL min-1

~ 78 – – – 300 – 360 – – – – (Nordin et al.,
2013)

MF
5 °C min-1,
900 °C, 0.25–
0.33 mm

~ 80 – – – 300 – 350 – – – – (Safana et al.,
2018)

EFB
10 °C min-1,
900 °C, 20 mg,
<0.212 mm

– 30 –
150 – 200 _ _ 301 1.600 – – 0.180 (Idris et al.,

2010)

EFB
10 °C min-1,
900 °C, 1–2 mm,
25 mL min-1

~ 79 90 –
150 110 ~

200 – – – – 410 – – (Liew et al.,
2018)

EFB

10 oC min-1,
900 °C, 15 mg,
0.5–2 mm, 50
cm3 min-1

~ 87 30 –
200 66 – 295 – 356 – – – – (Lee et al.,

2017)

EFB

15 °C min-1,
850 °C, 5 mg, <
0.3 mm, 150 mL
min-1

~ 87 < 150 60 – – – 329 0.900* – – –
(Asadieraghi
and Wan
Daud, 2015)

EFB
10 °C min-1,
600 °C, 100 mL
min-1

~ 70 – – – – – 355 0.255 – – –
(Abdullah and
Gerhauser,
2008)
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Table 3. (cont.)
OPB TGA conditions Weight Thermal degradation zones Reference
residue Loss

(%)
Moisture

drying
Pyrolysis carbonization

First region Second region
Temp.
range
(°C)

Tpeak1
(°C)

Tonset
(°C)

Tpeak2
(°C) Ypeak2

(mg min-1)

Tpeak3
(°C) Ypeak3

(mg min-1)

Toffset
(°C)

Tpeak4
(°C) Ypeak4

(mg min-1)

OPT

10 °C min-1,
900 °C, 1–2
mm, 25 mL min-
1

~ 70 90 –
150 110 ~

200 – – – – 430 – – (Liew et al.,
2018)

OPF
10 °C min-1,
900 °C, 5 mg,
100 mL min-1

~ 93 – – – 279 0.240 341 0.505 – – – (Soon et al.,
2016)

OPF
10 °C min-1,
800 °C, 0.38
mm, 10–15 mg

~ 71 50 –
150 – – – – – – – – – (Nordin et al.,

2016)

OPF

10 °C min-1,
900 °C, 1–2
mm, 25 mL min-
1

– 90 –
150 110 ~

200 – – – – 520 – – (Liew et al.,
2018)

Tpeaki is the temperature at a maximum weight loss rate, Ypeaki is the maximum weight loss rate in a reaction zone, Tonset is the temperature at the beginning of the
reaction, Toffset is the temperature at the end of the reaction and * represent unit reported in wt.% °C-1.
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The moisture in all the OPB residues evaporated at a lower temperature range from 30 to 150 °C
within which the peak drying rate occurred at approximately 110 °C. After the removal of free
moisture, the thermal decomposition of the residues commenced at a temperature of ~ 200 °C,
except for MF with a slightly lower onset degradation temperature of 180 °C. The lower
temperature for MF degradation could be attributed to the high content of extractives which are
less thermally stable than the lignocellulosic components (Grønli et al., 2002). During the second
reactive zone, the other residues exhibited two characteristic reaction regions except for EFB
(Table 3). The first region recognize as a shoulder is considered the stage for the decomposition
of hemicellulose. The decomposition of hemicellulose attained a maximum rate of 0.39 mg min-1
at 282 °C for PKS, 0.25 mg min-1 at 277 °C for MF and 0.24 mg min-1 at 279 °C for OPF. The
main devolatilization comprised the overlap of the continuous decomposition of hemicellulose
and commencement of decomposition of cellulose. The peak temperature of the second region
for PKS varied within a higher temperature range from 352 to 380 °C depending on the sample
and TGA conditions, while the peak values for MF and EFB occur at slightly lower temperature
ranges from 336 to 360 °C, and 329 to 356 °C, respectively. The individual devolatilization rates
at the corresponding second peak temperature revealed that OPF decomposing at 0.505 mg min-1
is less reactive compared to MF (0.600 mg min-1), PKS (0.760 mg min-1) and EFB (1.60 mg min-
1). Likewise, the overall reactivity comprising the two regions can be expressed in the decreasing
order of EFB (0.530 mg min-1 °C-1), PKS (0.360 mg min-1 °C-1), and MF (0.270 mg min-1 °C-1)
(Idris et al., 2010) . It is worth noting that a very low overall reactivity value of 0.234 mg min-1
for OPF was calculated from the degradation rate results reported by Soon et al. (2016).

The offset temperatures of 430, 420, 410, 430 and 520 °C mark the end of the second reactive
zone and the beginning of the third reactive zone for PKS, MF, EFB, OPT, and OPF,
respectively (Liew et al., 2018). Meanwhile, the absence of a peak in the third reactive zone for
the residues is due to the low decomposition rate of lignin which started at the initial stage of the
second reactive zone and ended at around 700 °C. Although Idris et al. (2010) and Asadieraghi
and Daud (2015) reported a peak at 700 and 704 °C, respectively for PKS, they indicated that it
was not a decomposing activity of a lignocellulosic component but rather a decomposing activity
of mineral carbonates. In summary, the thermal decomposition of the OPB residues ends at a
temperature below 600 °C and if carbonized at 850 or 900 °C, the approximate weight loss is
reported to be around 64 to 92 %. The weight loss reported for PKS reveals that it is relatively
the most thermally stable residue, whereas the weight loss reported for OPF indicated that it is
the least thermally stable residue. As for both OPT and OPF, there is limited information in the
literature to support the quantitative description of their thermal behaviours.

3.3 Pyrolysis Kinetics
Pyrolysis kinetics is crucial for describing biomass conversion behaviours and the rate of its
thermochemical process. Pyrolysis kinetics is commonly expressed using the Arrhenius law,
which comprises the activation energy, frequency factor, and reaction order. Both rate
expressions for the isothermal and non-isothermal conditions were mathematically derived and
can be found in reputable studies (Bach et al., 2015; Chew et al., 2016; Guo and Lua, 2000, Guo
and Lua, 2001; Mohd Din et al., 2005; Plis et al., 2017) . During pyrolysis, the lignocellulosic
components of biomass decompose into numerous intermediates and final products through
thermochemical reactions that occur sequentially and/or simultaneously. Consequently, pyrolysis
kinetic models were proposed based on the assumptions and were successfully applied to OPB
residues. A list of studies for TG pyrolysis including the types of models and kinetic parameters
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are summarized in Table 4. The one-step global model or single reaction model assumes that all
lignocellulosic components have similar thermal reactivity, consequently, information about
their reaction mechanisms is limited and only approximate values for activation energy and
frequency factor can be obtained using the first-order reaction model from DTG data (Bach and
Chen, 2017; Guo and Lua, 2001; Hameed et al., 2019) . The two-step consecutive reactions
model assumes that the main components of biomass transform into biochar and volatile
products via intermediates. Based on the assumption of the two-step consecutive reaction model,
the collection of the pyrolytic rates of converting the individual lignocellulosic components into
intermediate products forms the primary pyrolysis rate, while converting intermediates to char
constitutes the secondary pyrolysis rate (Guo and Lua, 2001; Luangkiattikhun et al., 2008). The
model for the parallel reaction (Table 4) has been tested on PKS and MF based on the
assumption that these residues consist of cellulose and hemicellulose and each decomposed
simultaneously at different rates and temperatures (Luangkiattikhun et al., 2008).

From Table 4, it can be seen that the activation energy and frequency factor reported for OPB
residues appeared to be significantly influenced by the reaction order. The higher the reaction
order, the higher the activation energy and frequency factor. For the one-step global reaction
model, the activation energy of PKS ranged from 54.8 to 205 kJ mol-1. Evaluation of the TGA
conditions revealed that the activation energy of PKS increased as pyrolysis temperature
increased. The activation energy of EFB exhibited a similar trend as pyrolysis temperature
increased. MF at a pyrolysis temperature of 700 °C has the highest value of activation energy
compared to PKS which could be a result of the higher content of extractives in MF that slowly
decomposed at a lower energy level (Luangkiattikhun et al., 2008) . At peak pyrolysis
temperature of 900 °C, the activation energy value of PKS was the highest, EFB was the medium
and OPF was the lowest. The frequency factor for the OPB residues also exhibited a similar
trend. Overall, it can be inferred from the one-step reaction model that OPF requires low
activation energy to commence and complete pyrolysis while PKS and MF require relatively
higher activation energy.

For the consecutive reactions model, the values of activation energies and frequency factors for
OPB residues during the primary pyrolysis are lower than the values for secondary pyrolysis
irrespective of reaction order. During the first-order reaction, the magnitude of activation
energies for the formation of intermediates from the residues are in the following order EFB >
MF > PKS > OPF. A similar trend with little difference can also be observed for the activation
energies during char formation. According to the kinetic results presented by Soon et al. (2016)
and Asadieraghi and Daud (2015) , OPF and PKS have similar activation energies but different
frequency factors indicating that pyrolytic reaction would be faster for OPF. Yang et al. (2004)
examined almost similar values of activation energies for MF and EFB and it can be observed
that their values are relatively higher than those for OPF and PKS. Luangkiattikhun et al. (2008)
calculated and compared the kinetic parameters for PKS and MF using three different models;
one-step global, consecutive reactions and parallel reactions. They found that the experimental
data for PKS and MF were best described by the two-parallel reactions model. In conclusion, the
kinetic parameters calculated from the consecutive reactions model suggest that the ease to
commence pyrolysis reaction is in the following order: OPF < PKS < MF < EFB. However, as
the pyrolytic reaction begins, it was observed that the OPF reaction was the fastest while PKS
showed the slowest reaction.
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Table 4. List of Literature of Pyrolysis Kinetic Parameters of Oil Palm Biomass
OPB TGA conditions Kinetic reaction Kinetic parameters Reference

residue EA1
(kJ mol-1)

EA2
(kJ mol-1)

A1
(s-1)

A2
(s-1)

N R2

PKS 10°C, 600°C, 10 mg, 1–2
mm, 50 cm3 min-1

single reaction
model

54.8 – 9.78 x 103 – 1.07 0.991 (Guo and Lua,
2001)

PKS 20°C min-1, 700°C 10 mg,
0.3 mm, 100 mL min-1

single reaction
model

109.1 – 2.05 x 107 – 2.65 – (Luangkiattikhun
et al., 2008)

PKS 10°C, 800°C, 3–6 mg, single reaction
model

199.0 – 1.1 x 1017 – 5.00 0.998 (Khan et al.,
2011)

PKS 10oC min-1, 900oC, 15
mg, 0.5–2 mm, 50 cm3

min-1

single reaction
model

205.0 – _ – – – (Lee et al., 2017)

MF 20°C min-1, 700°C 10 mg,
0.3 mm, 100 mL min-1

single reaction
model

125.9 – 1.96 x 109 – 3.32 – (Luangkiattikhun
et al., 2008)

EFB 10°C, 800°C, 3–6 mg, single reaction
model

151.0 – 1.4 x 1015 – 5.30 0.997 (Khan et al.,
2011)

EFB 10°C min-1, 900°C, 15
mg, 0.5–2 mm, 50 cm3

min-1

single reaction
model

169.4 – – – – – (Lee et al., 2017)

OPF 50°C min-1, 900°C, 100
mL min-1

single reaction
model

59.2 – – – – – (Atnaw et al.,
2013)

PKS 10°C, 600°C, 10 mg, 1–2
mm, 50 cm3 min-1

consecutive
reaction model

110.3 168.4 6.85 x 107 9.82 x
1012

1 &
2/3

0.985 &
0.987

(Guo and Lua,
2001)

PKS 10°C min-1, 900°C, 20
mg, <0.212 mm

consecutive
reaction model

150.0 192.1 1.16 x
1012

1.12 x
1014

– 0.998 &
0.999

(Idris et al.,
2010)

PKS 20°C min-1, 700°C 10 mg,
0.3 mm, 100 mL min-1

consecutive
reaction model

82.1 299.3 6.99 x 104 3.89 x
1024

5.24 – (Luangkiattikhun
et al., 2008)

PKS 10°C min-1, 850°C, 1–2
mm

consecutive
reaction model

54.0 33.0 1.53 x 104 25.3 1.20
&
0.70

0.99 &
0.99

(Mohd Din et
al., 2005)

PKS 15°C min-1, 850°C, 5 mg,
< 0.3 mm, 150 mL min-1

consecutive
reaction model

34.1 57.3 8.7 x 10-1 2.5 x
102

1.00 0.994 &
0.996

(Asadieraghi and
Daud, 2015)
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PKS 10°C min-1, 550°C, 8 mg,
0.21 mm

consecutive
reaction model

47.6 22.4 2.389 x
103

5.431 1.00 0.929 (Surahmanto et
al., 2017)

Table 4. (cont.)
OPB TGA conditions Kinetic reaction Kinetic parameters Reference

residue EA1
(kJ mol-1)

EA2
(kJ mol-1)

A1
(s-1)

A2
(s-1)

N R2

MF 10°C, 600°C, 10 mg, 0.5–
1 mm, 50 cm3 min-1

consecutive
reaction model

107.6 166.7 6.85 x 107 1.86 x
1013

– 0.982 &
0.987

(Guo and Lua,
2000)

MF 10°C min-1, 900°C, 20
mg, <0.212 mm

consecutive
reaction model

166.2 216.1 6.55 x
1013

3.54 x
1016

– 0.998 &
0.988

(Idris et al.,
2010)

MF 20°C min-1, 700°C 10 mg,
0.3 mm, 100 mL min-1

consecutive
reaction model

71.4 326.3 9.73 x 103 7.93 x
1028

5.24 – (Luangkiattikhun
et al., 2008)

MF 10°C, 900°C, 25 mg,
0.125–0.15 mm, 40 mL
min-1

consecutive
reaction model

51.8 67.7 1.03 x 101 3.644 x
102

1.00 0.997 &
0.998

(Yang et al.,
2004)

MF 15°C min-1, 850°C, 5 mg,
<0.3 mm, 150 mL min-1

consecutive
reaction model

26.1 52.7 1.6 x 10-1 1.15 x
102

1.00 0.997 &
0.998

(Asadieraghi and
Daud, 2015)

EFB 10°C min-1, 900°C, 20
mg, <0.212 mm

consecutive
reaction model

– 209.7 – 1.45 x
1017

– 0.999 (Idris et al.,
2010)

EFB 10°C min-1, 900°C, 25
mg, <0.125 mm, 40 mL
min-1

consecutive
reaction model

59.5 67.6 7.74 x 101 6.197 x
102

1.00 0.987 &
0.995

(Yang et al.,
2004)

OPF 10°C min-1, 900°C, 5 mg,
100 mL min-1

consecutive
reaction model

33.8 56.2 3.3 x 103 5.3 x
105

1.00 0.954 &
0.981

(Soon et al.,
2016)

PKS 20°C min-1, 700°C 10 mg,
0.3 mm, 100 mL min-1

parallel reaction
model

226.4 173.5 4.05 x
1016

1.2 x
1014

3.88 – (Luangkiattikhun
et al., 2008)

MF 20°C min-1, 700°C 10 mg,
<1 mm, 100 mL min-1

parallel reaction
model

201.0 156.8 9.04 x
1014

1.86 x
1013

3.69 – (Luangkiattikhun
et al., 2008)

EAi is activation energy, Ai is frequency factor, n is reaction order, and R2 is the quality of fit
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4. CONCLUSION
The PKS appeared to be the most relatively thermally stable OBP residue, while OPF is the least
stable OPB residue. The kinetic parameters calculated from the consecutive reactions model
suggest that the ease to commence pyrolysis reaction is in the following order: OPF < PKS < MF
< EFB. As pyrolysis reaction commences, OPF reaction is the fastest while PKS reaction is the
slowest. The thermal decomposition of the OPB residues ends at a temperature below 600 °C
and is fully carbonized at 850 or 900 °C with an approximate weight loss of around 64 to 92 %.
Overall, yields of OPB-derived biochar are highly dependent on the pyrolysis mode: slow
pyrolysis and microwave pyrolysis favour higher biochar yield, while fast pyrolysis and catalytic
pyrolysis yielded more bio-oil than biochar. The asymptote biochar yield is higher than 23 wt.%
under slow pyrolysis conditions and the tendency of obtaining biochar with high asymptotic
yield is in the following order: PKS > MF > EFB > OPT > OPF. The order is attributed to the
proportion of lignin content which slowly decomposes over a wide temperature range. The
treatment temperature of 400, 500, and 600 °C are suitable carbonization temperatures for OPB
to respectively produce biochars that can be used as biofuels, feedstocks for activated carbon,
and reducing agents in steel manufacturing process.
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